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In this paper we examine the equilibrium and stability of an optically opaque high-current discharge under
conditions of strong radiant heat transfer, which ensures uniformity of the temperature in the equilibrium state and
rapid temperature equalization during fluctuations. The dispersion equations are obtained and the instability
development increments are calculated for the cases of simple cylindrical discharge (z-pinch) and discharge with
reverse axial current. The study is made for the limiting case of low-conductivity plasma, which corresponds to
discharge parameters which have been proposed for use as plasma light sources [1]. It is shown that maintenance of
the discharge for a fairly long time in a state close to equilibrium, when large-scale instabilities capable of altering
significantly the equilibrium state have not yet managed to develop, is possible only in a discharge with reverse
current. The presence of instabilities of the kink and sausage types in the low-conductivity plasma along with the
well-known fact of the existence of such instabilities in high-conductivity plasma [2, 3] suggests that instabilities of this
sort are characteristic for plasma of any conductivity.

In connection with the considerable interest in the problem of using high-current pulsed discharges as powerful
light sources, a theoretical examination was undertaken in [1, 4] of the equilibrium and stability of discharges in
optically dense and optically transparent plasmas with the objective of clarifying their properties at a radiating
surface temperature T ~(3—10) eV and particle density N~10®em™%. Asg is known from studies on controlled
thermonuclear synthesis, the pinch discharge is hydrodynamically unstable; in this discharge, instabilities of the
local overheat, kink, and sausage types develop, which leads to current cutoff and plasma collapse after very short
times, usually amounting to a few microseconds (see [3] and the literature cited therein). Therefore, one of the
basic problems in using high-current discharges in a plasma as light sources is that of discharge stability.

However, it was noted in [1] that application of the theory presented in [2] to the case in question is not
legitimate, since the analysis of [2] applies to a high-temperature, practically infinitely conducting plasma which is
transparent for radiation. For the purposes noted above, we are interested in both opaque and transparent plasmag
under conditions of rather low temperatures (T ~ (3—-10) eV), when finite conductivity effects (diffusion of the
electromagnetic fields into the plasma, absence of the current skin-effect, and so on), which can be neglected for
high-temperature thermonuclear plasmas, can play a significant role.

1. Problem formulation. Equilibrium and stability of plane and cylindrical discharges in an opaque plasma have
been studied on the basis of the equations of single-fluid MHD in [1].

Study of the equilibrium discharge state has shown that the characteristic temperature variation scale x¢ (rT for
the cylindrical discharge) differs significantly from the characteristic pressure and density variation scale xp(rp)°
Satisfaction of the inequality x> Xp rp > rp) ensures uniformity of the temperature across the discharge section and,
consequently, high temperature of the plasma radiating surface. Analysis of fluetuations with wavelengths Ay << Xp has
shown that the discharge is stable in the geometric-optics approximation. For analysis of fluctuation wavelengths which
are comparable with the characteristic dimensions of the system, it is possible to use the approximation in which the
temperature fluctuations are practically instantaneously diffuséd by the high radiant heat conduction. The condition for
validity of the approximation is the inequality XT202 >> xpaqovs.

The stability of both equilibrium and nonequilibrium discharges in cases of high c? < agvsXy, and low et > OV eXp
conductivity was examined in [1] under the assumption of constant discharge temperature and absence of fluctuations.
We note that study of the nonequilibrium-discharge stability is particularly important in high-conductivity plasma,
since the establishment of equilibrium with respect to the field, amounting to its equalization across the discharge
section, is determined by the skin time 7, ~ 47moxpzc’2. It is obvious that we can speak of steady-equilibrium stability
only if the skin time 7, is less than the time 7 ~ Xp/Vs characterizing the duration of the discharge formation process,
i.e., provided
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€% > dnogwzp (1.1)

This inequality is not satisfied in high-conductivity plasma. The stability of the low-conductivity plasma, in which
the reverse inequality (1.1) holds, can be studied under the assumption of the existence of equilibrium.

In [1] the stability of the equilibrium cylindrical low-conductivity discharge was studied only for the m = 0 mode
in the longwave limit. In this paper we present a complete examination of the stability of the cylindrical discharge and
of the equilibrium and stability of the discharge with reverse current in a low-conductivity plasma. For the above
assumptions concerning high radiant heat conduction, all the processes taking place in such a plasma can be
considered isothermal. In this case the system of MHD equations is written in the form

—aa—‘:—}—divpvzo, p-(1+z)"pT—v o
p[% 4 (vV)v]=—— Vp+ - [rot B, B] (1.2)
rot B *———j, AB=0

We shall see later that the boundary conditions for (1.2) are obtained directly from (1.2) by using the explicit
form of the equilibrium solutions for both the simple cylindrical discharge and the discharge with reverse current.

2. Simple cylindrical discharge (z-pinch). As is known, the equilibrium state of the cylindrical discharge is
maintained by the current whose self-magnetic field at each point balances the kinetic pressure of the plasma. In the
stationary equilibrium state the discharge field E; is constant across the discharge section and the hydrodynamic
velocity vy = 0. The expressions for the equilibrium values of the hydrodynamic quantities have the following form [1]:
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(2.1)

Let us examine the stability of this equilibrium state. Linearizing (1.2) with respect to small deviations of the
hydrodynamic quantities from the equilibrium values, which depend on the time and coordinates, in the form ¢(r) exp
(~iwt +imo + ik,z), we obtain the following system of equations for the perturbations:

—iolt 1 L2 oo, + oy - ihypov, = 0 (@.2)
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sapgp, = ik, ( py + aet| — 2 BoB, (2.5)
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Let us examine separately the stability of the modes with m =0 and m = 0. For m = 0 the equations for By and
v separate. The solution for By which is finite at zero has the form

Bo=CI, (Br), B =kl @.7)

Substituting the expressions for v, and v, from (2.3) and (2.4) into (2.2) and using the explicit form of By, from
(2.7), we obtain for p,; a second-order nonhomogeneous equation, from which we find the bounded-at-zero solution

pu= Caly(or) -+ Tz BJo(m
azl]/kf——-;’)— \]/ls2 ——l {P;%‘é’;’%) 2.8)

Here we have introduced v = iw in place of the frequency w. For unstable solutions vy > 0.

The problem boundary conditions follow from vanishing of the density py at the edge of the plasma. By virtue of
the boundedness of the plasma velocity perturbation at the edge, the right-hand sides of (2.3) and (2.5) must vanish for
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r =rp, which gives the two boundary conditions

[l Z22)+ 2] =0 [m+ fgi]rzrpzo (2.9)

It is easy to show that the second condition in (2.9) has the obvious physical meaning of conservation of the total
current in the discharge during disturbances.

Substituting solutions (2.7) and (2.8) into (2.9), we obtain a system of homogeneous algebraic equations for the
coefficients C; and C,;, from whose solvability condition we obtain for the m = 0 mode the following dispersion equation:

(02 + PO, Bre) I, (@ry) — 2Bl (Bro)l; (orp) + Yory (B2
—a?) laly (arp)ly Bro) — Blo (arp)l, Brp)]l =0 (2.10)

This equation has a solution in two cases. For the longwave Brp &1, ory, <« 1, where o > 3, (2.10) leads to the
spectrum

=g 2Y3LE o g goyFleln (2.11)
rp I'p
This spectrum coincides with the unstable solution found in [2] for isothermal plasma of infinite conductivity but
under the assumption of distributed current. We see from (2,11) that this instability is retained in the low-conductivity
plasma.

In the shortwave region Brp »> 1, arp > 1, (2.11) has the unstable root

21k ] 5

oc=3+% oo T (2.12)

»
The maximum increment of the shortwave fluctuations is limited by the condition of applicability of the radiant-
heat-conduction approximation I < Agz; therefore ymax < ZVSZ/lrp, where [ is the Rosseland quantum mean free path.

All the higher modes of the longwave instabilities, and also the shortwave modes of the type Vi~ szs which
exist in high-conductivity plasma, are stabilized in the low-conductivity plasma. We note that the nature of the spatial
behavior of the solutions (2.7), (2.8) for the disturbances differs from the case of the high conductivity. They decay
monotonically from the edge into the depth of the plasma, while in the case of the high conductivity there was an
oscillatory variation of the solutions in the body of the plasma. A consequence of this is the effective increase of the
time for development of shortwave instabilities in the depth of the plasma. As for the rapidly developing small-scale
surface disturbances, they are not dangerous. For the reasons mentioned, we can consider that the cylindrical low-
conductivity discharge is more stable with respect to axisymmetric instabilities than the high-conductivity discharge.

Now let us investigate the m =0 modes, which are kink and spiral perturbations of the pinch discharge.
Solving (2.2)— (2.6}, we obtain
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Jm (Br) (8r) — i€y sig (2.13)
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These solutions of (2.2)—(2.6) differ from the general solutions in the requirement that the perturbations be
finite for r = 0. The boundary conditions, as for the case m = 0, are obtained directly from (2.3)—(2.5) and have the
form
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The condition of solvability of (2.14) relative to the coefficients C;, C,, and C; leads to the following dispersion
equation for determining the plasma fluctuation spectra:
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In the region of most dangerous longwave oscillations Brp < 1, arp < 1, expanding the terms of (2.15) into a
series in powers of Brp and ory up to and including terms of fourth order, we obtain the unstable roots

2
o? = B2 —-——m;}; 2 oo 7TP= = kv (2.16)

We note that this solution is not valid for the m = 0 mode, analyzed above. In the shortwave limit |k, |r > 1 the
unstable oscillation spectrum has the form
2|k, n2

2B —
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(2.17)

This spectrum coincides with the corresponding spectrum for the m = 0 mode (see (2.12)), i.e., the shortwave
instabilities have the same increment for all the azimuthal modes. It follows from (2.16) and (2.17) that in the low-
conductivity plasma excitation of fluctuations with any m is possible, while in the high-conductivity plasma in the
absence of an external magnetic field the modes with m = 2 are not excited in the longwave limit, being stabilized by
the current self~-magnetic field [5]. In this case the discharge in the low-conductivity plasma is less stable with
respect to disturbances with m = 0 than is the discharge in the ideally conducting plasma.

3. Discharge with reverse current. Let us examine the discharge with reverse current in an optically dense
plasma under conditions of radiant heat conduction. Such a system consists of a coaxial cylindrical layer carrying the
current and a massive metal conductor located along the axis of the system, through which current flows in the
reverse direction,

It will be 'shown later that such a discharge has considerably greater stability than the simple cylindrical (z-
pinch) discharge. This fact was known from the very first few studies of discharges with reverse current in a high-
temperature, ideally conductive plasma [6]. Moreover, the possibility of creating in such systems a very large
radiating surface makes them more promising for use as powerful light sources than the z-pinch.

The system of equations describing the equilibrium discharge with reverse current has the same form as for the
z~pinch [1]. However, in solving this system we must consider the reverse current azimuthal field.

Considering the plasma temperature constant ag a result of the high radiant heat conduction, we find the
following distribution of the equilibrium quantities in the discharge with reverse current:

2n R¢?
B, = -E_GOEOr( "‘7.:—)
. TRy E r? r?
po:pm+——9;a°~—°—(1~—@+lnﬁ> (8.1)
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Here ppy, and pm are the maximum values of the plasma pressure and density, which are reached at the point
r = Rp. We see from (3.1) that the discharge is concentrated in the region r; < r = r,, where r; and r, are the roots of
the equation py(r) = 0. The quantities Ry and r; are connected by the relation

Rz = (3.2)

ﬂlo

where j; is the discharge current density and I is the total axial current. Inthe limiting case Rg— 0 (i.e., I; —0 and
r; — 0 as well), formulas (3.1) become (2.1} for the simple z-pinch,

For large I, the equilibrium radius Ry > r, ~ ry. Inthis case it is convenient to introduce the variable x = r — R,
(ix| < Ry). Expanding (3.1) into a series in powers of x/R,, we obtain

B, = % seEz = V 8apy, %
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These formulas coincide exactly with the distribution of the equilibrium quantities in the plane surface
discharge [1]. Equivalence of the inverse pinch for high axial currents to the plane discharge holds provided

Ry  Iojo IoioEo
g* Prf? =g > 1 (3.4)

In this case the equilibrium radius Ry equals

. L N— 3.5
B V2Hpmc (3.5)

and the following relation is satisfied:
In = 4Ryzpjy = 21,

Now let us express the quantities Ty, and py, (or Ny) in terms of the total number of particles trapped in the
discharge and the total discharge current. We have for the total number of particles per centimeter length of the
plasma layer

= 4R, §pcz ( —p)z—?—ﬁoszm (3.6).

i}
We find the plasma temperature using the energy balance between radiation from the plasma surface and ohmic
heating,
6Tt = GorpEy? (8.7

Using (3.6) and (3.7), we can show that the discharge current in the inverse pinch has no upper limit, as does the
z-pinch in the high-temperature ideally conducting plasma [7]. The plasma temperature is connected with the total
number of trapped particles and the total discharge current by the relation

o A 4 Zp 3
T = 151., (12 %N, R, (3.8)
Just as in the simple z-pinch, in the optically dense plasma in the reverse pinch increase of the discharge
current leads to increase of the plasma temperature and thereby increase of the radiation power.

Finally, we note that the condition for weak nonuniformity of the temperature xi. >> x% and the condition for
applicability of radiant heat conduction Xp > Iy in the case in question (Ry » xp) coincide with the corresponding
conditions for the flat pinch [1].

Analysis of the reverse current discharge stability is based on the same system of equations (2.2)—(2.6) as for
the cylindrical discharge, with the difference that the boundary conditions (2.9) and (2.14) are now posed at both
boundaries of the discharge, at the points ry and r; (or x =+ x, for the case Ry > xp). The solution of the posed
problem involves tedious mathematical computations. Final results can be obtained only for the modes withm =0. In
this case the dispersion equation can be written in the form of vanishing of the determinant
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where ¢; = ¢(ry), ¢, = @(ry) and the functions themselves in the determinant are
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Here I, is the Bessel function of imaginary argument, K, is the Macdonald function, o and 8 are introduced
following (2.8).

For the shortest wavelength case, when S(r, — ry) > 1, the dispersion equation (3.9) reduces to the form

(5 B9 o o) (Bra)— 281, o) Ty (B (1 — 22
X (B — a?) 22 o {ody (arg) Iy (Bre) — BIo(arg) I, Bra)} = 0 (8.11)
In the sought region, assuming r; close to Ry, r; ~ Ry =xp < Ry, we find the unstable root

21k 2
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The maximum increment of the shortwave oscillations is
Ymax = 202 [ Ryl
where [ is the Rosseland quantum mean free path. In the region SRy > 1, Bxp < 1 (assuming that Ry > xp) Eg. (3.9) has
no solution. Finally, for longwave oscillations, when SRy < 1, we find from (3.9)

Z]k ]v o2
7t = <R0 (3.13)

Thus the shortwave instabilities with wavelength less than the discharge-layer thickness have the largest
increment. However, as we noted previously, in examining the z-pinch such instabilities do not present any great
danger for the discharge as a whole. The dangerous longwave instabilities with clkzl Ry < 1 develop considerably more
slowly than in the cylindrical pinch (for sufficiently large Ry).

Analysis of the m =0 modes is very complicated. However, in the shortwave limit, when Ikzlxp > 1, it is possible
to show that the increment is independent of the azimuthal number m and has the same form as in the z-pinch with the
replacement r — Ry, i.e.,

2k, |02
72 = — R (3.14)

According to the above theory, it is possible to realize an equilibrium discharge in a low-conductivity plasma
provided the time for development of the instabilities is longer than the time for penetration of the discharge field into
the plasma, i.e.,

Vano,a.2 << 2 (3.15)
For the cylindrical discharge a; = ry v ~ vg/r,; for the inverse pinch a3 ¥ Xy, ¥ ~ vg/Rq.
P p P S

The duration of the existence of the equilibrium state is determined by the instability development times. In the
simple z-pinch at temperatures T ~ (3-10) eV and radius rp & 2-3 em the instability development time T, = 107° sec =
10 usec. Large values of rp are not achievable because of violation of condition (3.15). As for the inverse pinch, it can
be maintained for a fairly long time 7, ~ Ry/vg ~ 50-100 usec as a result of the large value of Ry. In combination with
the large radiating surface this makes it possible to consider the reverse-current discharge as a possible plasma
light source.
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